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Abstract

In this work, a new cryptographic protocol to encrypt text data is
proposed. It is based on the use of a particular type of discrete dynamical
system called reversible memory cellular automata. It is shown to be
secure against the most important cryptanalytic attacks such as brute-
force attack, key sensitivity attack, ciphertext-only attack, known-

plaintext attack and chosen-plaintext attack.
1. Introduction

As 1s well-known, confidentiality is mandatory for majority of
network applications. Achieving information security in our electronic
society requires a vast array of technical means, which are provided
through cryptography.
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Specifically, cryptography is the study of mathematical techniques
related to aspects of information security, that is, its main goal is to
provide security for communications and data storage systems.
Consequently, the four basic objectives of cryptography are:
Confidentiality, data integrity, entity authentication, and data origin
authentication.

This paper deals with confidentiality. Roughly speaking, our main
goal is to provide an efficient mathematical algorithm to enable two
people to communicate over an insecure channel in such a way that an
opponent cannot understand what is being said. To get this objective, the
original message to be sent (plaintext) must be modified, according to an
algorithm (cryptosystem) and some parameters called keys, to obtain the
encrypted message (ciphertext). If the keys are only known for the sender
and the receiver of the message, the cryptosystem is called symmetric or
secret-key cryptosystem, and its security mainly relies on keeping secret
the key used. On the other hand, if the key to encrypt the message
(public key) is publicly known, whereas the key to decrypt the message
(private key) is only known by the receiver, the cryptosystem is called

asymmetric or public-key cryptosystem (see, for example, [9, 13]).

In order to design a robust cryptosystem, one should study if there
exist any weaknesses in the protocol. The techniques used to compromise
cryptosystems are referred to as cryptanalytic attacks. Specifically, the
main objectives of such techniques are to obtain the keys of a
cryptosystem or the plaintext from the ciphertext. The most important
attacks are brute-force attacks, ciphertext-only attack, known-plaintext
attack and chosen-plaintext attack.

In this work we are interested in the use of very simple models of
computation, called reversible memory cellular automata, in order to
design a secret-key cryptosystem for 128 bitlength block messages.
Basically, memory cellular automata are delay discrete dynamical
systems formed by a finite number of identical objects called cells, which
are endowed with a state that changes at every discrete step of time
according to a deterministic rule, whose variables are the states of a set
of cells at previous time steps (see, for example, [1]).
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The use of cellular automata to design cryptographic protocols goes
back to middle eighties when Wolfram proposed the cellular automaton
with rule number 30 as a pseudorandom bit generator for cryptographic
purposes (see, [14, 15]). Since then, many cryptosystems based on cellular
automata have been proposed (see, for example, [2, 3, 4, 5, 6, 7, 8, 10, 11,
12]).

The rest of the paper is organized as follows: In Section 2, the basic
theory about memory cellular automata is introduced; in Section 3 the
algorithm to encrypt text data is presented; an example is shown in
Section 4 and the security analysis of the protocol is given in Section 5.
Finally, the conclusions and further work are introduced in Section 6.

2. Overview of Cellular Automata

A one-dimensional cellular automaton (CA for short) is a special class
of discrete dynamical system, which is formed by a finite one-dimensional

array of n identical objects called cells: (1), ..., (n). Each one of them can
assume a state from a finite state set S. If the number of possible states

is k, then S = Zj,. The state of the i-th cell at time ¢ is denoted by sgt).

The CA evolves deterministically in discrete time steps, changing the
states of all cells according to a local transition function, f : S™ — S.

The updated state of each cell depends on the m variables of f, which are
the states at previous time steps of a set of cells, including the cell itself,
and called its neighborhood. The set of indices of the CA is the ordered
finite subset V < Z,|V|=m, such that for the i-th cell, its

neighborhood, V;, is the set of m cells givenby V; = {{(i+a): a e V}.
In this work, r-th order symmetric neighborhoods are considered;
that is V. ={-r,-r+1,..,-1,0,1, ..., 7 =1, r}. As a consequence, the

evolution of the state of the cell (i) is given by

S )0 g

1+r

or, equivalently, s+ = f(Vi(t)), where Vl.(t) stands for the states of the

12



566 A. MARTIN DEL REY

neighbour cells of (i) at time ¢. The vector ) = (sg), vy sg)) € Zy, is
called the configuration at time ¢ of the CA. The set of all configurations

of a CA is denoted by C, and consequently | C| = &". The configuration

Cc) is called the initial configuration of the CA and the sequence
{C(O), - C(t)} is called the ¢-th order evolution of the CA (starting from

c).

As the number of cells is finite, boundary conditions must be
considered in order to assure the well-defined dynamics of the CA. In this

paper, periodic boundary conditions are taken: If i = j(mod n), then s®)

)

Moreover, the global function of the CA is a linear map, ® : C — C,
that yields the configuration at the next time step during the evolution of
the cellular automaton, that is, (D(C(t)) -t Ifois bijective then the
CA is called reversible (RCA for short) and the evolution backwards is
possible by means of the inverse CA whose global transition function is
G

The standard paradigm for cellular automata considers that the state
of every cell at time ¢ +1 depends on the state of its neighbor cells at
time ¢. Nevertheless, one can consider cellular automata for which the
state of every cell at time ¢ +1 not only depends on the states of the

neighbor cells at time ¢, but also on their states at previous time steps:
t —1,t -2, etc. This is the main feature of memory cellular automata,

MCA for short (see [1]). Specifically, a k-th order MCA is defined by a
global transition function given by

o:cxre e oc? ), otk 2 o), @)
3. The Cryptosystem

In this section, the proposed secret-key cryptosystem to encrypt text
data is introduced.
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Basically, it consists of a 128-bit block cipher based on the use of
memory cellular automata. Its secret key is a pair (K, K'), where the
size of each subkey is of 128 bits (the total bitlength of the key is 256).
The first subkey, K, is involved in the MCA, whereas the second subkey,
K' is obtained from the protocol, and, as a consequence, it can be
considered as a session key.

The proposed cryptographic algorithm is formed by three phases: The
setup phase, where the sender chooses the memory cellular automata
and the first subkey to be used in the protocol, the encryption phase,
where the sender encrypts the plaintext using the protocol and the
second subkey is obtained, and finally, the decryption phase, where the
receiver decrypts the ciphertext.

3.1. The setup phase

In this phase, the sender divides the plaintext, M, into k blocks of
n =128 bits, so that, M = M| My ||---| Mj_1 | M}, where | denotes

the concatenation operator. Note that each block can be interpreted as a

configuration of a CA of n = 128 cells with state set S = Z, as follows: If
M; = myq - mj 98, 3)

where m; ; is the j-th bit of the block M;, then the configuration

assoclated is
128
C = (miyl, veey mi’lgs) € Zg . (4)

Moreover, the sender selects a secret key K of 128-bitlength, and
generates a sequence of (2r +1)k bits, where r is the order of the

neighborhood, by means of a pseudorandom bit generator (see [9]) taking
K as the seed:

oM, o) e k) ()

» O9r415 w0 D951

Subsequently, the sender chooses # MCA with S = Zy and n =128
cells. The j-th MCA, 1< j <k, is a (j+1)th order MCA whose global
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function is as follows:
¢tV - oW, ..., ¢y = w,(c®), .., ¢ty D), 6)

Moreover, the local transition function is given by the following
expression:

sV = VD) 4k (V) 4 589 (mod 2) ™

with 1 <7 <128, where

frn (VM) = Zb(’”) (t-m+1) (mod 2),1 < m < j. 8)

re1-15i41
t=—r

For the sake of simplicity, this (j +1)th order MCA is denoted by A;,

and, obviously, it is reversible (see [1]). Its inverse MCA, AJ_-I, is defined

by the following local transition function:
s = V) = AVETD) 4 5, (mod 2) ©)

with 1 <i <n =128.

Finally, the sender chooses a sequence, {Nj, ..., N}, of k secret

integer numbers such that N; > N;_; +i for every i,1 <i < k, and N;
> 2.
3.2. The encryption phase

In this phase, the sender encrypts the text M = M| M, |-
| My,_1 | M), using the MCA defined in the setup phase.

The algorithm is composed by % steps. In the i-th step, the evolution
of the (i+1)-th order MCA, A;, is computed starting from the i
configurations obtained from the (i —1)th step and a new configuration

given for the i-th block M;. Specifically, the steps are as follows:
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Step 1. Let C(O), C(l), be the initial configurations of the 2-th order

MCA, A;, such that c - M, and c ig a truly random sequence of

bits which must be generated by a device without the intervention of the
sender. Then by iterating N; times the MCA, A;, the configurations

C(er), cM) 10)
are obtained. When the protocol is finished, the configuration C© can be

destroyed.

Step 2. Let us consider the two configurations obtained in the

(N1+1) _

previous step and set C M. Tterating Ng times the 3-th order

MCA, A,, the following three configurations are obtained:

C(Nz—z), C(Nz—l), C(Nz), (11)

Step i. Let us consider the i configurations obtained from the step
i—1:

C(Ni—r”l), " C(Ni‘l), (12)
and set CNi-1*1) = M;. Tterating N; times the (i +1)-th order MCA,
A;, the following i + 1 configurations are obtained:

C(Ni*i), C(Ni*iﬂ), " C(Ni—l), C(Ni). (13)

Step k. Let us consider the k configurations obtained from the step
k-1:

C(Nk—rkﬂ), C(Nk—1*k+2), " C(Nk—l)’ (14)
and set CNVe-1+D) _ p7 ,- By simply computing N, iterations of the

(B +1)-th order MCA, A, the following k+1 configurations are

obtained:
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C(Nk—k), C(Nk—kﬂ), " C(Nk—l), C(Nk). (15)

Consequently, the output of the MCA-based algorithm is a set of
k +1 configurations, each one of size 128 bits, that is, 128(k + 1) bits are

obtained.
The ciphertext, M, is formed by the concatenation of the

configurations C(Nk_k+1), . cNk) .

M = M| | My, (16)

where M; stands for the configuration C(Nk_k+i), 1<i<k
Moreover, the second subkey is given by K' = CWNE=k) Note that it

is a session key which depends on the plaintext to be cipher.

3.3. Decryption phase

In this phase, the receiver decrypts the ciphertext using the inverse
MCA defined in the setup phase.

To decrypt a ciphertext, M = M- -1 M, the receiver must consider
the £ MCA, A7 L Agl, defined above. Then, taking into account the
configurations

GO _ 3, ... 60D 3, 80 - K an

and applying the following k-steps algorithm, the receiver can obtain the
plaintext M. The algorithm to decrypt the message is as follows:

Step 1. Starting from the k + 1 initial configurations given in (17),

and by computing Ny, — N;,_; —1 iterations of Agl, the configurations

CWNE=Np-171) _ oWNp1#1) - GNp=Npo1+k-1) _ o(Np-1-k+1) 0 (qg)
are obtained. The configuration CWNk=Ne-1-1) _ oWk-1+1) _ pf L gives
the k-th block of the plaintext.

Step 2. Let us consider the k configurations obtained in the previous
step:
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CWe=Ni-1) - G(NE=Ni-1+k-1), (19)

If N, q-N, -1 iterations of the MCA Aj'; are computed

starting from them, the following %k configurations are obtained:

G(Nk*Nk—2*1), é(Nk*Nk—2)’ . ONE=Np—g+k=2) (20)

Obviously, CWe=Ni-2-1) _ pg »-1, and the receiver must use the

.., CWNp=Np—2+k-2)

remaining k —1 configurations, G(Nk_Nk‘Z), . , in the

next step.

Step k. Let us consider the configurations obtained from the
(k —1)-th step:

G(Nk—Nl_l), G(Nk—Nl), ONp=N1+1). (21)

The first one is the second block of the plain text, Mo, whereas if the

receiver computes N; —1 iterations of A7! using CWe=N1) G(Np=N1+1)

as the initial configurations, it yields CWNk-1) , CNk) The last block of
the plaintext to be obtained is CWe-1) _ M.

4. An Example

For the sake of simplicity, let us consider the 1024-bitlength plaintext
M, which can be divided into the following £ = 8 blocks of 128 bits:

CW = £9d9e40e77681da9c864f13bcc64b933,
CM1*1) < 149ed3¢271558b0086521684a13¢83,
CcN2+1) _ c6elacf69a4c6dlfeb0allbfedbfc796,
c W5+ = 5d60497a02ae8c4ba2fT1aec35377521,

CWN4H) = Cefee680c¢6d25f2b0795706499¢2611,
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C(N5+1) = b9c¢d827ab5405cea78c5e94b43ebecc,
CWN6*D) = fe587£2414399¢b3¢270f195f6e8¢5¢T,

cWN7+1) - 32ec704bacal0ala0fa748eac2c5c8aab. (22)

Note that the blocks are given in terms of their hexadecimal codes. Also

suppose that the random initial configuration is given by:

) = 959d4¢71449¢7942¢8df 3eda3d7a03b0. (23)
Moreover, set r = 5 as the radius of the symmetric neighborhoods,

N; =78, Ny =129, N3 = 175, N, = 243,

N = 317, Ng = 340, N; = 432, Ng = 499, (24)
and

K = 3ec48d3ff788d150c5133 fce4533e4c0. (25)

Then, using the MCA-based protocol introduced in Section 3, the

ciphertext is given by the following eight configurations:

C492) = 951204262404740b8af61f111a8de8d,
C1493) = c6febfeded19ba02031d4102d1844e,
C119%) = 19¢c43bbledfechfd48e9adfb9954f02,
C49) = ccaTaca9dsf7810978d48ead1b413fT,
C49) = 455£9528d694badT5d3afafd65263734,
C97) = 246b1£04121cdda9688d6f84df275b0f,
C498) = 79b320a2bae3f303/b3f969f0ab9337,

C499) = 7¢14617¢8¢7d2b4d91 faecTIL622b603. (26)
Furthermore, the subkey K' is

c) - g = 071¢9233f91b39ed89a04f25507520da. @7
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To recover the plaintext from this ciphertext and the subkey K’, it is

enough to follow the steps pointed out in Subsection 3.3.
5. Security Analysis

Five cryptanalytic attacks for evaluating the security of the
cryptosystem proposed are studied: brute-force attack, key sensitivity
test, ciphertext-only attack, known-plaintext attack and chosen-plaintext
attack. Each of them assumes that the cryptanalyst has the complete
knowledge of the cryptosystem used but no information about the secret
key.

As the bitlength of the secret key is of 256 bits, then the order of the
key space is 1.15792 x 1077, and consequently, it makes the brute-force

attack infeasible.

Moreover, the proposed cryptosystem also passes the key sensitivity
test: Let us consider the plain-text M and the secret key (K, K')

mentioned in the above example. If we modified only one bit in the secret
subkey K, a new subkey, @, is obtained:

@ = 3ec48d3ff788d151c5133fce4533e4c0. (28)

If the plaintext is ciphered using the new subkey @, the following
ciphertext is obtained:

C492) = 9¢2857¢25587¢242f9ec9d958a955¢le,
C493) = 686f554d619886dccaaba813dTd0ccAc,
C49Y) = 7867 fa4a32ec97c8f0ed59b51eebedfb,
C495) = 1014a4¢3993b0b852271b1eb2c1bbbla,
C498) _ 8f74ed1dc5b9ed6c24b92¢9573747T ca,

C497) = 4605539d01a841226e0fbbf8cT15f52a,

C498) — c94defed5254¢cT7365b8d08c097ad5ed,
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C199) = £278F3fc53e8d83474¢18d67T4646db. (29)

Note that the discrepancies (that is, the number of different bits)
between this ciphertext (obtained from the modified key ) and the
correct cryptogram is of 49.12% of total bits. Moreover, the corresponding

subkey @' obtained is very different from K'.

Furthermore, if we try to recover the plaintext using the secret key
(@, K'), and the original ciphertext obtained from (K, K'), the

recovered plaintext is the following:

¢V = 6608fb20899d96397dce91ebf628aal,
CN1*Y) = e5374d1e6515569634acaf 80a42Tacy,
CWN2*1) = 97840f72f0243bccffe92362236a012d,
cWVs+1) = 9803b6070a65a2513a9b72Tbf5470b4f,

CWNa+) = 41150581d33a1f96¢c0Tb3e64f91551a,
cWN5+1) — £988daa09f9b7b228009073bc0d1741,
CWN6*1) = p14¢25ebd7969f4874F12330892¢c440,

CN7+D) _ 642¢3489b5609d8ad3a8fc9cldTe2f 1a. (30)

The results state that the percentage of different bits between the
two plaintexts is 49.71%.

Finally, if we try to recover the plaintext using the same subkey K,
and a slightly different subkey K',

b71¢9233f91b39ed89a44f25507520da, 31)
the plaintext obtained is:

CcW = 658d472eb4b37a189219 fa27ddadc3eb,

CN1*Y) 2 ceal1f8ddcbee56a5ddaf6d1al162901b,
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CcN2+) = gbFap0691dc81el f26e9d18746a72983,
cWs+) = 40ae83282dcdd598536b9e57cbbeT14a,
CWNa+Y) = 44374 fd3f48a074fd9cbacel0dbas5hd,
cWN5+1) = 80836b0a12a668dcTb734110c471e751,
CWN6*D) = dec0372ad4afbbT3fT14341df0bee50d,

CNTHY) — Gfec65b15911ee4440¢12d1544a3be23. (32)

As a simple calculus shows, the percentage of different bits between the
two plaintext is 49.32%.

In the ciphertext-only attack, the secret key must be determined

solely from an intercepted ciphertext:

CWr=k+1) - oWk), (33)

Consequently, both subkeys, K and K', are unknown for the
cryptanalyst. In this case, to obtain only the k-th block of the plaintext,

M, = CWk-1+1) _ G(Nk_Nkfl_l), a non-linear system of 128 equations
with 128 + (2r + 1) unknown variables: bl(k), - bgjll, and the bits of K,

must be solved, which is impossible taking into account the conditions of
the cryptosystem.

In the known-plaintext attack, the secret key (K, K') must be

obtained starting from a pair of a plaintext and its corresponding
ciphertext. The difficulty of this attack is the same as the previous one,
and consequently, the cryptosystem is also secure against known-

plaintext attack.

Finally, in the chosen-plaintext attack, the cryptanalyst is able to
choose a plaintext and obtain its corresponding ciphertext. In this way
the better attack consists of taking as a plaintext the following:

M = (0, (12.5.3.%), 0); consequently cWi-1+1) _ (0, (1.2.?), 0). Nevertheless,



576 A. MARTIN DEL REY

as the configuration ¢ is randomly computed, the cryptanalyst must

solve k non-linear systems of 128 equations with 128 + (2r + 1)k
unknown. As the integer numbers Ni, ..., N, remain unknown to the

cryptanalyst, it is impossible for him/her to know the number of terms of
such non-linear systems. Consequently, the protocol is secure against

chosen-plaintext attack.
6. Conclusions and Further Work

In this work a novel secret-key cryptosystem for text data has been
proposed. It is based on the use of memory cellular automata.
Specifically, the text to be encrypted is divided into %k blocks of 128-
bitlength, and it is encrypted by means of a random initial configuration
and k reversible memory cellular automata involving a 128-bitlength key.
As a consequence its corresponding ciphertext (of the same size) is
obtained jointly with another 128-bitlength subkey, necessary to recover
the original plaintext.

The protocol is shown to be secure against the most important
cryptanalytic attacks such as brute-force attack, ciphertext-only attack,
known-plaintext attack and chosen-plaintext attack. It is also shown to
pass the key sensitivity test.

Further work aimed at designing a similar cryptosystem in which
only the 128 bits of the first subkey, K, determine the local transition
functions, instead of the pseudorandom sequence of bits generated using
these bits as a seed.

Moreover, the proposed scheme can be used to design an algorithm to
encrypt images, by using two-dimensional memory cellular automata.
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