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Abstract 

In this work, a new cryptographic protocol to encrypt text data is 
proposed. It is based on the use of a particular type of discrete dynamical 
system called reversible memory cellular automata. It is shown to be 
secure against the most important cryptanalytic attacks such as brute-
force attack, key sensitivity attack, ciphertext-only attack, known-
plaintext attack and chosen-plaintext attack. 

1. Introduction 

As is well-known, confidentiality is mandatory for majority of 
network applications. Achieving information security in our electronic 
society requires a vast array of technical means, which are provided 
through cryptography.  
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Specifically, cryptography is the study of mathematical techniques 
related to aspects of information security, that is, its main goal is to 
provide security for communications and data storage systems. 
Consequently, the four basic objectives of cryptography are: 
Confidentiality, data integrity, entity authentication, and data origin 
authentication. 

This paper deals with confidentiality. Roughly speaking, our main 
goal is to provide an efficient mathematical algorithm to enable two 
people to communicate over an insecure channel in such a way that an 
opponent cannot understand what is being said. To get this objective, the 
original message to be sent (plaintext) must be modified, according to an 
algorithm (cryptosystem) and some parameters called keys, to obtain the 
encrypted message (ciphertext). If the keys are only known for the sender 
and the receiver of the message, the cryptosystem is called symmetric or 
secret-key cryptosystem, and its security mainly relies on keeping secret 
the key used. On the other hand, if the key to encrypt the message 
(public key) is publicly known, whereas the key to decrypt the message 
(private key) is only known by the receiver, the cryptosystem is called 
asymmetric or public-key cryptosystem (see, for example, [9, 13]). 

In order to design a robust cryptosystem, one should study if there 
exist any weaknesses in the protocol. The techniques used to compromise 
cryptosystems are referred to as cryptanalytic attacks. Specifically, the 
main objectives of such techniques are to obtain the keys of a 
cryptosystem or the plaintext from the ciphertext. The most important 
attacks are brute-force attacks, ciphertext-only attack, known-plaintext 
attack and chosen-plaintext attack. 

In this work we are interested in the use of very simple models of 
computation, called reversible memory cellular automata, in order to 
design a secret-key cryptosystem for 128 bitlength block messages. 
Basically, memory cellular automata are delay discrete dynamical 
systems formed by a finite number of identical objects called cells, which 
are endowed with a state that changes at every discrete step of time 
according to a deterministic rule, whose variables are the states of a set 
of cells at previous time steps (see, for example, [1]). 
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The use of cellular automata to design cryptographic protocols goes 
back to middle eighties when Wolfram proposed the cellular automaton 
with rule number 30 as a pseudorandom bit generator for cryptographic 
purposes (see, [14, 15]). Since then, many cryptosystems based on cellular 
automata have been proposed (see, for example, [2, 3, 4, 5, 6, 7, 8, 10, 11, 
12]). 

The rest of the paper is organized as follows: In Section 2, the basic 
theory about memory cellular automata is introduced; in Section 3 the 
algorithm to encrypt text data is presented; an example is shown in 
Section 4 and the security analysis of the protocol is given in Section 5. 
Finally, the conclusions and further work are introduced in Section 6. 

2. Overview of Cellular Automata 

A one-dimensional cellular automaton (CA for short) is a special class 
of discrete dynamical system, which is formed by a finite one-dimensional 
array of n identical objects called cells: ....,,1 n  Each one of them can 

assume a state from a finite state set S. If the number of possible states 

is k, then .kS Z=  The state of the i-th cell at time t is denoted by ( ).t
is  

The CA evolves deterministically in discrete time steps, changing the 

states of all cells according to a local transition function, .: SSf m →  
The updated state of each cell depends on the m variables of f, which are 
the states at previous time steps of a set of cells, including the cell itself, 
and called its neighborhood. The set of indices of the CA is the ordered 
finite subset ,, mVV =⊂ Z  such that for the i-th cell, its 

neighborhood, ,iV  is the set of m cells given by { }.: ViVi ∈αα+=  

In this work, r-th order symmetric neighborhoods are considered; 
that is { }.,1...,,1,0,1...,,1, rrrrV −−+−−=  As a consequence, the 

evolution of the state of the cell i  is given by 

( ) ( ( ) ( ) ( ) ),...,,...,,1 t
ri

t
i

t
ri

t
i sssfs +−
+ =  (1) 

or, equivalently, ( ) ( ( ) ),1 t
i

t
i Vfs =+  where ( )t

iV  stands for the states of the 
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neighbour cells of i  at time t. The vector ( ) ( ( ) ( ) ) ,...,,1
n
k

t
n

tt ssC Z∈=  is 

called the configuration at time t of the CA. The set of all configurations 

of a CA is denoted by ,C  and consequently .nk=C  The configuration 
( )0C  is called the initial configuration of the CA and the sequence 

{ ( ) ( )}tCC ...,,0  is called the t-th order evolution of the CA (starting from 
( ) ).0C  

As the number of cells is finite, boundary conditions must be 
considered in order to assure the well-defined dynamics of the CA. In this 

paper, periodic boundary conditions are taken: If ( ),mod nji ≡  then ( )t
is  

( ).t
js=  

Moreover, the global function of the CA is a linear map, ,: CC →Φ  
that yields the configuration at the next time step during the evolution of 

the cellular automaton, that is, ( ( ) ) ( ).1+=Φ tt CC  If Φ is bijective then the 

CA is called reversible (RCA for short) and the evolution backwards is 
possible by means of the inverse CA whose global transition function is 

.1−Φ  

The standard paradigm for cellular automata considers that the state 
of every cell at time 1+t  depends on the state of its neighbor cells at 
time t. Nevertheless, one can consider cellular automata for which the 
state of every cell at time 1+t  not only depends on the states of the 
neighbor cells at time t, but also on their states at previous time steps: 

,2,1 −− tt  etc. This is the main feature of memory cellular automata, 

MCA for short (see [1]). Specifically, a k-th order MCA is defined by a 
global transition function given by 

( ( ) ( ) ( ) ) ( )....,,,,: 111 ++−− =Φ→×Φ tktttk CCCCCCC "  (2) 

3. The Cryptosystem 

In this section, the proposed secret-key cryptosystem to encrypt text 
data is introduced. 
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Basically, it consists of a 128-bit block cipher based on the use of 
memory cellular automata. Its secret key is a pair ( ),, KK ′  where the 
size of each subkey is of 128 bits (the total bitlength of the key is 256). 
The first subkey, K, is involved in the MCA, whereas the second subkey, 

,K ′  is obtained from the protocol, and, as a consequence, it can be 
considered as a session key. 

The proposed cryptographic algorithm is formed by three phases: The 
setup phase, where the sender chooses the memory cellular automata 
and the first subkey to be used in the protocol, the encryption phase, 
where the sender encrypts the plaintext using the protocol and the 
second subkey is obtained, and finally, the decryption phase, where the 
receiver decrypts the ciphertext. 

3.1. The setup phase 

In this phase, the sender divides the plaintext, M, into k blocks of 
128=n  bits, so that, ,121 kk MMMMM −= "  where  denotes 

the concatenation operator. Note that each block can be interpreted as a 
configuration of a CA of 128=n  cells with state set 2Z=S  as follows: If 

,128,1, iii mmM "=  (3) 

where jim ,  is the j-th bit of the block ,iM  then the configuration 

associated is 

( ) ....,, 128
2128,1, Z∈= ii mmC  (4) 

Moreover, the sender selects a secret key K of 128-bitlength, and 
generates a sequence of ( )kr 12 +  bits, where r is the order of the 
neighborhood, by means of a pseudorandom bit generator (see [9]) taking 
K as the seed: 

( ) ( ) ( ) ( ) ....,,...,,...,, 121
1

12
1

1
k
r

k
r bbbb ++  (5) 

Subsequently, the sender chooses k MCA with 2Z=S  and 128=n  

cells. The j-th MCA, ,1 kj ≤≤  is a ( ) th-1+j  order MCA whose global 
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function is as follows: 

( ) ( ( ) ( ) ) ( ( ) ( ) ) ( )....,,...,, 11 jtjtt
j

jtt
j

t CCCCCC −+−−+ +Ψ=Φ=  (6) 

Moreover, the local transition function is given by the following 
expression: 

( ) ( ( ) ) ( ( ) ) ( ) ( )2mod,1
1

1 jt
i

jt
ij

t
i

t
i sVfVfs −+−+ +++= "  (7) 

with ,1281 ≤≤ i  where 

( ( ) ) ( ) ( ) ( )∑
−=

+−
+−+

+− ≤≤=
r

rt

mt
li

m
lr

mt
im jmsbVf .1,2mod1

1
1  (8) 

For the sake of simplicity, this ( ) th-1+j  order MCA is denoted by ,jA  

and, obviously, it is reversible (see [1]). Its inverse MCA, ,1−
jA  is defined 

by the following local transition function: 

( ) ( ( ) ) ( ( ) ) ( ) ( )2mod,1
1

1 jt
i

jt
i

t
ij

t
i sVfVfs −+−+ +−−−= "  (9) 

with .1281 =≤≤ ni  

Finally, the sender chooses a sequence, { },...,,1 kNN  of k secret 

integer numbers such that iNN ii +> −1  for every ,1, kii ≤≤  and 1N  
.2>  

3.2. The encryption phase 

In this phase, the sender encrypts the text "21 MMM =  

kk MM 1−  using the MCA defined in the setup phase. 

The algorithm is composed by k steps. In the i-th step, the evolution 
of the ( ) th-1+i  order MCA, ,iA  is computed starting from the i 

configurations obtained from the ( ) th-1−i  step and a new configuration 

given for the i-th block .iM  Specifically, the steps are as follows: 
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Step 1. Let ( ) ( ),, 10 CC  be the initial configurations of the 2-th order 

MCA, ,1A  such that ( ) ,1
1 MC =  and ( )0C  is a truly random sequence of 

bits which must be generated by a device without the intervention of the 
sender. Then by iterating 1N  times the MCA, ,1A  the configurations 

( ) ( )11 ,1 NN CC −  (10) 

are obtained. When the protocol is finished, the configuration ( )0C  can be 
destroyed.  

Step 2. Let us consider the two configurations obtained in the 

previous step and set ( ) .2
11 MC N =+  Iterating 2N  times the 3-th order 

MCA, ,2A  the following three configurations are obtained: 

( ) ( ) ( ),,, 222 12 NNN CCC −−  (11) 

… 

Step i. Let us consider the i configurations obtained from the step 
:1−i  

( ) ( ),...,, 11 1 −− +− ii NiN CC  (12) 

and set ( ) .11 i
N MC i =+−  Iterating iN  times the ( ) th-1+i  order MCA, 

,iA  the following 1+i  configurations are obtained: 

( ) ( ) ( ) ( ).,...,,, 11 iiii NNiNiN CCCC −+−−  (13) 

… 

Step k. Let us consider the k configurations obtained from the step 
:1−k  

( ) ( ) ( ),...,,, 111 21 −−− +−+− kkk NkNkN CCC  (14) 

and set ( ) .11 k
N MC k =+−  By simply computing kN  iterations of the 

( ) th-1+k  order MCA, ,kA  the following 1+k  configurations are 
obtained: 
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( ) ( ) ( ) ( ).,...,,, 11 kkkk NNkNkN CCCC −+−−  (15) 

Consequently, the output of the MCA-based algorithm is a set of 
1+k  configurations, each one of size 128  bits, that is, ( )1128 +k  bits are 

obtained. 

The ciphertext, ,M  is formed by the concatenation of the 

configurations ( ) ( ) :...,,1 kk NkN CC +−  

,1 kMMM "=  (16) 

where iM  stands for the configuration ( ) .1, kiC ikNk ≤≤+−  

Moreover, the second subkey is given by ( ).kNkCK −=′  Note that it 
is a session key which depends on the plaintext to be cipher.  

3.3. Decryption phase 

In this phase, the receiver decrypts the ciphertext using the inverse 
MCA defined in the setup phase. 

To decrypt a ciphertext, ,1 kMMM "=  the receiver must consider 

the k MCA, ,...,, 11
1

−−
kAA  defined above. Then, taking into account the 

configurations 

( ) ( ) ( ) ,~,~...,,~
1

10 KCMCMC kk
k ′=== −  (17) 

and applying the following k-steps algorithm, the receiver can obtain the 
plaintext M. The algorithm to decrypt the message is as follows: 

Step 1. Starting from the 1+k  initial configurations given in (17), 

and by computing 11 −− −kk NN  iterations of ,1−
kA  the configurations 

( ) ( ) ( ) ( ),~...,,~ 1111 1111 +−−+−+−− −−−− == kNkNNNNN kkkkkk CCCC  (18) 

are obtained. The configuration ( ) ( )
k

NNN MCC kkk == +−− −− 11 11~  gives 

the k-th block of the plaintext. 

Step 2. Let us consider the k configurations obtained in the previous 
step: 
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( ) ( ).~...,,~ 111 −+−− −− kNNNN kkkk CC  (19) 

If 121 −− −− kk NN  iterations of the MCA 1
1

−
−kA  are computed 

starting from them, the following k configurations are obtained: 

( ) ( ) ( ).~...,,~,~ 21 222 −+−−−− −−− kNNNNNN kkkkkk CCC  (20) 

Obviously, ( ) ,~
1

12
−

−− =− k
NN MC kk  and the receiver must use the 

remaining 1−k  configurations, ( ) ( ),~,,~ 222 −+−− −− kNNNN kkkk CC …  in the 
next step. 

… 

Step k. Let us consider the configurations obtained from the 
( ) th-1−k  step: 

( ) ( ) ( ).~,~,~ 11 111 +−−−− NNNNNN kkk CCC  (21) 

The first one is the second block of the plain text, ,2M  whereas if the 

receiver computes 11 −N  iterations of 1
1
−A  using ( ) ( )111 ~,~ +−− NNNN kk CC  

as the initial configurations, it yields ( ) ( ).~,~ 1 kk NN CC −  The last block of 

the plaintext to be obtained is ( ) .~
1

1 MC kN =−  

4. An Example 

For the sake of simplicity, let us consider the 1024-bitlength plaintext 
M, which can be divided into the following 8=k  blocks of 128 bits: 

( ) ,933641386497768140991 bbccfcdaeedfC ≡  

( ) ,8313216840086527155839111 cafbcedaC N ≡+  

( ) ,7961150164691612 fcdbfcafcbdcaacfecC N ≡+  

( ) ,35377521712480260497513 aecfbacaeadC N ≡+  

( ) ,2611499079570225668014 bcbbfdcccfeeC N ≡+  
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( ) ,643945785405827915 eccebecceaabcdbC N ≡+  

( ) ,75861952703241439958716 cceffccbffcC N ≡+  

( ) .58527480007043217 aacceacfaaabacaecC N ≡+  (22) 

Note that the blocks are given in terms of their hexadecimal codes. Also 
suppose that the random initial configuration is given by: 

( ) .003733879427144942590 badedadfeecdC ≡  (23) 

Moreover, set 5=r  as the radius of the symmetric neighborhoods, 

,243,175,129,78 4321 ==== NNNN  

,499,432,340,317 8765 ==== NNNN  (24) 

and 

.04453351331507883483 cefcecdffdecK =  (25) 

Then, using the MCA-based protocol introduced in Section 3, the 
ciphertext is given by the following eight configurations: 

( ) ,88111618740049512042624492 ddeafafbfC ≡  

( ) ,1844410203102419456493 eddebaefefecC ≡  

( ) ,02995494814312494 fadfbecdfccbfdbbecC ≡  

( ) ,741314877810978897495 fbeaddfdacaccaC ≡  

( ) ,652637343475694952855496 afafddbadfaC ≡  

( ) ,0275846968804121162497 fbdffdcddafbaC ≡  

( ) ,9337096933033232079498 abfffbfbaeabC ≡  

( ) .6036227991427817147499 bbfaecdbdccecC ≡  (26) 

Furthermore, the subkey K ′  is 

( ) .2550752004893991923371491 dafaedbfcbKC =′≡  (27) 
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To recover the plaintext from this ciphertext and the subkey ,K ′  it is 
enough to follow the steps pointed out in Subsection 3.3. 

5. Security Analysis 

Five cryptanalytic attacks for evaluating the security of the 
cryptosystem proposed are studied: brute-force attack, key sensitivity 
test, ciphertext-only attack, known-plaintext attack and chosen-plaintext 
attack. Each of them assumes that the cryptanalyst has the complete 
knowledge of the cryptosystem used but no information about the secret 
key.  

As the bitlength of the secret key is of 256 bits, then the order of the 

key space is ,1015792.1 77×  and consequently, it makes the brute-force 
attack infeasible. 

Moreover, the proposed cryptosystem also passes the key sensitivity 
test: Let us consider the plain-text M and the secret key ( )KK ′,  
mentioned in the above example. If we modified only one bit in the secret 
subkey K, a new subkey, Q, is obtained: 

.04453351331517883483 cefcecdffdecQ =  (28) 

If the plaintext is ciphered using the new subkey Q, the following 
ciphertext is obtained: 

( ) ,1955958992422558728579492 ecadecfeceC ≡  

( ) ,4078136619886554686493 cccddadccaadfC ≡  

( ) ,5515908973247867494 cdfbeebedfcecafaC ≡  

( ) ,11218522710399341014495 abbbcebbbbcaC ≡  

( ) ,9573747792246951748496 caebcedbdcedfC ≡  

( ) ,527158084122601605539497 afcfbbfeadaC ≡  

( ) ,450970887365525494498 edacdbccdefcdeC ≡  
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( ) .746466718834748533278499 dbfdedefcffC ≡  (29) 

Note that the discrepancies (that is, the number of different bits) 
between this ciphertext (obtained from the modified key Q) and the 
correct cryptogram is of 49.12% of total bits. Moreover, the corresponding 
subkey Q′  obtained is very different from .K ′  

Furthermore, if we try to recover the plaintext using the secret key 
( ),, KQ ′  and the original ciphertext obtained from ( ),, KK ′  the 
recovered plaintext is the following: 

( ) ,162891963972089966081 aaebfdcedfbC ≡  

( ) ,94278065155696341537411 acaacafedceC N ≡+  

( ) ,01292362236024372978412 dabccffefefC N ≡+  

( ) ,454707279251365607032813 fbbfbaaabeC N ≡+  

( ) ,915516430796133150581414 afebccfadbC N ≡+  

( ) ,17410228009073790998815 dbcfbbfdaacC N ≡+  

( ) ,4401233089248747969251416 ccffebdcbC N ≡+  

( ) .12719838095348964217 afedcfcaaddbbcC N ≡+  (30) 

The results state that the percentage of different bits between the 
two plaintexts is 49.71%. 

Finally, if we try to recover the plaintext using the same subkey K, 
and a slightly different subkey ,K ′  

,2550752044893991923371 dafaedbfcb  (31) 

the plaintext obtained is: 

( ) ,3271892193744726581 ebddadcfaabebdC ≡  

( ) ,1162901164556684111 badfddaceddcfceC N ≡+  
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( ) ,72983187469261810691212 adefedcbabfC N ≡+  

( ) ,71457959853683282013 acbbcebdcddaeaC N ≡+  

( ) ,485109074483437414 bddbcbacefdaffdaC N ≡+  

( ) ,75147173411076681208083615 ecbdcaabC N ≡+  

( ) ,500714341734037216 dbeedffafbbaddccC N ≡+  

( ) .2331544124440159116517 beadceebafccC N ≡+  (32) 

As a simple calculus shows, the percentage of different bits between the 
two plaintext is 49.32%. 

In the ciphertext-only attack, the secret key must be determined 
solely from an intercepted ciphertext: 

( ) ( )....,,1 kk NkN CC +−  (33) 

Consequently, both subkeys, K and ,K ′  are unknown for the 
cryptanalyst. In this case, to obtain only the k-th block of the plaintext, 

( ) ( ),~ 11 11 −−+ −− == kkk NNN
k CCM  a non-linear system of 128 equations 

with ( )12128 ++ r  unknown variables: ( ) ( ) ,...,, 121
k
r

k bb +  and the bits of ,K ′  

must be solved, which is impossible taking into account the conditions of 
the cryptosystem. 

In the known-plaintext attack, the secret key ( )KK ′,  must be 
obtained starting from a pair of a plaintext and its corresponding 
ciphertext. The difficulty of this attack is the same as the previous one, 
and consequently, the cryptosystem is also secure against known-
plaintext attack. 

Finally, in the chosen-plaintext attack, the cryptanalyst is able to 
choose a plaintext and obtain its corresponding ciphertext. In this way 
the better attack consists of taking as a plaintext the following: 

( ( ) );0,,0 128 kM ⋅
= "  consequently ( ) ( ( ) ).0,,0 12811 "=+−iNC  Nevertheless, 
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as the configuration ( )0C  is randomly computed, the cryptanalyst must 
solve k non-linear systems of 128 equations with ( )kr 12128 ++  

unknown. As the integer numbers ,...,,1 kNN  remain unknown to the 
cryptanalyst, it is impossible for him/her to know the number of terms of 
such non-linear systems. Consequently, the protocol is secure against 
chosen-plaintext attack. 

6. Conclusions and Further Work 

In this work a novel secret-key cryptosystem for text data has been 
proposed. It is based on the use of memory cellular automata. 
Specifically, the text to be encrypted is divided into k blocks of 128-
bitlength, and it is encrypted by means of a random initial configuration 
and k reversible memory cellular automata involving a 128-bitlength key. 
As a consequence its corresponding ciphertext (of the same size) is 
obtained jointly with another 128-bitlength subkey, necessary to recover 
the original plaintext. 

The protocol is shown to be secure against the most important 
cryptanalytic attacks such as brute-force attack, ciphertext-only attack, 
known-plaintext attack and chosen-plaintext attack. It is also shown to 
pass the key sensitivity test. 

Further work aimed at designing a similar cryptosystem in which 
only the 128 bits of the first subkey, K, determine the local transition 
functions, instead of the pseudorandom sequence of bits generated using 
these bits as a seed. 

Moreover, the proposed scheme can be used to design an algorithm to 
encrypt images, by using two-dimensional memory cellular automata. 
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